首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4576篇
  免费   651篇
  国内免费   676篇
化学   3473篇
晶体学   42篇
力学   380篇
综合类   28篇
数学   480篇
物理学   1500篇
  2023年   77篇
  2022年   107篇
  2021年   163篇
  2020年   197篇
  2019年   178篇
  2018年   150篇
  2017年   158篇
  2016年   185篇
  2015年   184篇
  2014年   221篇
  2013年   327篇
  2012年   386篇
  2011年   415篇
  2010年   281篇
  2009年   242篇
  2008年   300篇
  2007年   239篇
  2006年   238篇
  2005年   221篇
  2004年   173篇
  2003年   173篇
  2002年   157篇
  2001年   138篇
  2000年   112篇
  1999年   119篇
  1998年   85篇
  1997年   78篇
  1996年   77篇
  1995年   71篇
  1994年   50篇
  1993年   61篇
  1992年   46篇
  1991年   48篇
  1990年   39篇
  1989年   35篇
  1988年   20篇
  1987年   15篇
  1986年   17篇
  1985年   17篇
  1984年   12篇
  1983年   13篇
  1982年   12篇
  1981年   8篇
  1980年   6篇
  1976年   8篇
  1975年   6篇
  1973年   7篇
  1972年   5篇
  1971年   3篇
  1970年   4篇
排序方式: 共有5903条查询结果,搜索用时 31 毫秒
31.
Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.  相似文献   
32.
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes’ activity in addition to the active center.  相似文献   
33.
A unique benzannulation strategy for regioselective de novo synthesis of densely functionalized phenols is described. Through metal-mediated formal [2+2+1+1] cycloaddition of two different alkynes and two molecules of CO, a series of densely functionalized phenols were obtained. The benzannulation strategy allows efficient regioselective installation up to five different substituents on a phenol ring. The resulting phenols have a substitution pattern different from those obtained from Dötz and Danheiser benzannulations.  相似文献   
34.
Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units. These molecules were efficiently synthesized primarily through intramolecular or intermolecular radical coupling of in situ generated organic radical species. Their structures were confirmed using X-ray crystallographic analysis, which also revealed a slightly bent geometry due to the incorporation of a cyclopentadiene ring at the bay regions of the rylene backbones. Bond lengh analysis and theoretical calculations indicate that their electronic structures resemble pyrenacenes more than quinoidal rylenes. That is, the aromatic sextets are predominantly localized along the long axis of the skeletones. As the chain length increases, these molecules exhibit enhanced electronic absorption with a bathochromic shift, and multiple amphoteric redox waves. This study introduces a novel synthetic approach for generating 1D extended PAHs and GNRs, along with their structure-dependent electronic properties.  相似文献   
35.
Polycrystalline metal–organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural “trade-off” was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2/CO2 separation with selectivity up to 82.5.  相似文献   
36.
Cu doped MoSi2N4 monolayer (Cu-MoSi2N4) was firstly proposed to analyze adsorption performances of common gas molecules including O2, N2, CO, NO, NO2, CO2, SO2, H2O, NH3 and CH4 via density functional theory (DFT) combining with non-equilibrium Green's function (NEGF). The electronic transport calculations indicate that Cu-MoSi2N4 monolayer has high sensitivity for CO, NO, NO2 and NH3 molecules. However, only NH3 molecule adsorbs on the Cu-MoSi2N4 monolayer with moderate strength (−0.55 eV) and desorbs at room temperature (2.36×10−3 s). Thus, Cu-MoSi2N4 monolayer is demonstrated as a potential NH3 sensor.  相似文献   
37.
In the present study, high-performance liquid chromatography micro-fraction bioactive evaluation and high speed countercurrent chromatography were performed on screening, identification and isolation of antioxidants from Citrus peel. Three compounds were screened as antioxidants and tyrosinase inhibitors using 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation scavenging assay and tyrosinase activity test, then they were identified as eriocitrin, narirutin and hesperidin. Moreover, the solvent system ethyl acetate-n-butanol-water (6:4:10, v/v/v) was used for separation of ethyl acetate extract of Citrus peel by high speed countercurrent chromatography. In total, 0.45 mg of eriocitrin with 87.10% purity, 2.04 mg of narirutin with 95.19% purity and 1.35 mg of hesperidin with 95.19% purity were obtained from 20 mg of ethyl acetate extract of Citrus peel in a single run and then each component was subjected to 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation scavenging assay and tyrosinase inhibition assay. Eriocitrin showed great antioxidant activity (the half-maximum concentration: 3.65 µM) and tyrosinase inhibition activity (the half-maximum concentration: 115.67 µM), while narirutin and hesperidin exhibited moderate activity. Tyrosinase inhibition activity for eriocitrin in vitro was reported for the first time. Furthermore, molecular docking between eriocitrin and mushroom tyrosinase was also studied.  相似文献   
38.
Accurate quantitative analysis of trace analytes in a complicated matrix is a challenge in modern analytical chemistry. An appropriate analytical method is considered to be one of the most common gaps during the whole process. In this study, a green and efficient strategy based on miniaturized matrix solid-phase dispersion and solid-phase extraction combined with capillary electrophoresis was first proposed for extracting, purifying and determining target analytes from complicated matrix, using Wubi Shanyao Pill as an example. In detail, 60 mg of samples were dispersed on MCM-48 to obtain high yields of analytes, then the extract was purified with a solid-phase extraction cartridge. Finally, four analytes in the purified sample solution were determined by capillary electrophoresis. The parameters affecting the extraction efficiency of matrix solid-phase dispersion, purification efficiency of solid-phase extraction and separation effect of capillary electrophoresis were investigated. Under the optimized conditions, all analytes demonstrated satisfactory linearity (R2>0.9983). What's more, the superior green potential of the developed method for the determination of complex samples was confirmed by the Analytical GREEnness Metric Approach. The established method was successfully applied in the accurate determination of target analytes in Wubi Shanyao Pill and thus provided reliable, sensitive, and efficient strategy support for its quality control.  相似文献   
39.
Three kinds of sanshools were separated from Zanthoxylum bungeanum oleoresin by high-speed countercurrent chromatography. Sanshools are a series of amide compounds extracted from the Zanthoxylum bungeanum. Due to similar structures, polarities, and dissociation constants, it was challenging to select an appropriate solvent system for their complete separation by countercurrent chromatography. To address this challenge, a solvent-system-selection strategy was proposed to identify a relatively suitable solvent system. Additionally, a separation procedure incorporating multi-elution modes selection was established to separate similar compounds in a logical order. Ultimately, a solvent system comprising n-hexane:ethyl acetate:methanol:water in a ratio of 19:1:1:5.67 was selected. Three amide compounds with high purity were obtained through the use of recycling elution mode to improve separation resolution: hydroxy-ε-sanshool (8.4 mg; purity: 90.64%), hydroxy-α-sanshool (326.4 mg; purity: 98.96%), and hydroxy-β-sanshool (71.8 mg; purity: 98.26%) were obtained from 600 mg sanshool crude extract. The summarized solvent-system-selection strategy and separation procedure incorporating multi-elution modes may instruct countercurrent chromatography users, particularly novices, seeking to separate compounds with highly similar chemical properties.  相似文献   
40.
Here, an imine-linked-based spherical covalent organic framework (COF) was prepared at room temperature. The as-synthesized spherical COF served as an adsorbent in dispersive solid-phase extraction (dSPE), by its virtue of great surface area (1542.68 m2/g), regular distribution of pore size (2.95 nm), and excellent stability. Therefore, a simple and high-efficiency dispersive solid phase extraction method based on a spherical COF coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established to determine aryl organophosphate esters in biological samples. This approach displayed favorable linearity in the range of 10.0–1000.0 ng/L (r > 0.9989), a high signal enhancement factor (58.8–181.8 folds) with low limits of detection (0.3–3.3 ng/L). Moreover, it could effectively eliminate complex matrix interference to accurately extract seven aryl organophosphate esters from mouse serum and tissue samples with spiked recoveries of 82.0%–117.4%. The as-synthesized spherical COF has been successfully applied in sample preparation. The dSPE-HPLC-MS/MS method based on a spherical COF has potential application to study the pollutants' metabolism in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号